论文标题
带有设置时间的切换 - 演奏器系统:有效的建模,MPC和对高温治疗的应用
Switched-Actuator Systems with Setup Times: Efficient Modeling, MPC, and Application to Hyperthermia Therapy
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Switched-actuator systems with setup times (SAcSSs) are systems in which the actuator configuration has to be switched during operation, and where the switching induces non-negligible actuator downtime. Optimally controlling SAcSSs requires the online solving of both a discrete actuator allocation problem, in which the switch-induced actuator downtime is taken into account, as well as an optimization problem for the (typically continuous) control inputs. Mixed-integer model predictive control (MI-MPC) offers a powerful framework for tackling such problems. However, the efficient modeling of SAcSSs for MI-MPC is not straightforward, and real-time feasibility is often a major hurdle in practice. It is the objective of this paper to provide an intuitive and systematic modeling procedure tailored to SAcSSs, which is specifically designed to allow for user-friendly controller synthesis, and to yield efficient MI-MPCs. We apply these new results in a case study of large-volume magnetic-resonance-guided high-intensity focused ultrasound hyperthermia, which involves the heating of tumors (using real-valued local heating controls, as well as discrete range-extending actuator relocation during which no heating is allowed) to enhance the efficacy of radio- and chemotherapy.