论文标题
重新访问对数校正到黑洞熵
Revisiting the Logarithmic Corrections to the Black Hole Entropy
论文作者
论文摘要
对极端黑洞熵的对数校正已成功地用于准确地匹配从微观构建体到重力路径积分的计算。在本文中,我们重新审视了针对极端黑洞(非苏匹配或超对称的极端黑洞)以及近超级黑孔的校正的问题。极端存在的零模式至关重要,因为它们的路径积分不能四及处理,需要调节。我们展示了如何通过取下$ 4D $ EINSTEIN-MAXWELL的零温度限制或$ 4D $ SuperGravity Path Indectorn不可分割的零温度限制来获得调节结果。这导致对非苏匹配和超对称极端黑洞的变性的估计很大。在同伴论文中,我们讨论了这种零模型如何使用超对称定位来精确计算引力路径积分的精确计算,如何影响BPS黑洞脱位的计算。
Logarithmic corrections to the entropy of extremal black holes have been successfully used to accurately match degeneracies from microscopic constructions to calculations of the gravitational path integral. In this paper, we revisit the problem of deriving such corrections for the case of extremal black holes, either non-supersymmetric or supersymmetric, and for near-extremal black holes. The zero-modes that are present at extremality are crucial, since their path integral cannot be treated quadratically and needs to be regulated. We show how the regulated result can be obtained by taking the zero-temperature limit of either the $4d$ Einstein-Maxwell or $4d$ supergravity path integral to find the Schwarzian or super-Schwarzian theories. This leads to drastically different estimates for the degeneracy of non-supersymmetric and supersymmetric extremal black holes. In a companion paper, we discuss how such zero-modes affect the calculation of BPS black holes degeneracies, using supersymmetric localization for an exact computation of the gravitational path integral.