论文标题
对比模式挖掘:调查
Contrast Pattern Mining: A Survey
论文作者
论文摘要
对比模式挖掘(CPM)是数据挖掘的重要且流行的子场。传统的顺序模式无法描述不同类别数据之间的对比信息,而涉及对比概念的对比模式可以描述不同对比条件下数据集之间的显着差异。根据该领域发表的论文数量,我们发现研究人员对CPM的兴趣仍然活跃。由于CPM有许多研究问题和研究方法。该领域的新研究人员很难在短时间内了解该领域的总体状况。因此,本文的目的是提供对比模式挖掘的研究方向的最新综合概述。首先,我们对CPM提出了深入的理解,包括评估歧视能力的基本概念,类型,采矿策略和指标。然后,我们根据CPM方法将其特征分类为基于边界的算法,基于树的算法,基于进化模糊的系统算法,基于决策树的算法和其他算法。此外,我们列出了这些方法的经典算法,并讨论它们的优势和缺点。提出了CPM中的高级主题。最后,我们通过讨论该领域的挑战和机遇来结束调查。
Contrast pattern mining (CPM) is an important and popular subfield of data mining. Traditional sequential patterns cannot describe the contrast information between different classes of data, while contrast patterns involving the concept of contrast can describe the significant differences between datasets under different contrast conditions. Based on the number of papers published in this field, we find that researchers' interest in CPM is still active. Since CPM has many research questions and research methods. It is difficult for new researchers in the field to understand the general situation of the field in a short period of time. Therefore, the purpose of this article is to provide an up-to-date comprehensive and structured overview of the research direction of contrast pattern mining. First, we present an in-depth understanding of CPM, including basic concepts, types, mining strategies, and metrics for assessing discriminative ability. Then we classify CPM methods according to their characteristics into boundary-based algorithms, tree-based algorithms, evolutionary fuzzy system-based algorithms, decision tree-based algorithms, and other algorithms. In addition, we list the classical algorithms of these methods and discuss their advantages and disadvantages. Advanced topics in CPM are presented. Finally, we conclude our survey with a discussion of the challenges and opportunities in this field.