论文标题

量子旋转的伪造伪用功能重新归一化:有限植物和Popov-Fedotov Trick

Taming pseudo-fermion functional renormalization for quantum spins: Finite-temperatures and the Popov-Fedotov trick

论文作者

Schneider, Benedikt, Kiese, Dominik, Sbierski, Björn

论文摘要

$ s = 1/2 $量子旋转的伪屈服表示在希尔伯特空间中引入了非物理状态,可以使用Popov-Fedotov Trick投射出来。但是,到目前为止,对伪屈服的功能重新归一化组方法的最新实施已经省略了Popov-Fedotov投影。取而代之的是,对零温度进行了限制,并假定对地面的没有非物理贡献。我们通过对非物理状态确实有助于基态的几个小型系统反示例的确切对角化来质疑这种信念。然后,我们将Popov-Fedotov投影介绍给伪弗里术功能重新归一化,从而实现有限的温度计算,而该方法仅对该方法进行了较小的技术修改。在整个中等温度下,我们的结果受到扰动的控制,我们确认它们在基准计算中的准确性。在较低的温度下,由于流动方程层次结构的截断误差,准确性降低了。有趣的是,这些问题不能通过切换到镶木素近似来缓解。我们将自旋投影作为方法 - 内在质量检查。我们还表明,可以通过有限尺寸缩放研究有限温度磁性秩序转换。

The pseudo-fermion representation for $S=1/2$ quantum spins introduces unphysical states in the Hilbert space which can be projected out using the Popov-Fedotov trick. However, state-of-the-art implementation of the functional renormalization group method for pseudo-fermions have so far omitted the Popov-Fedotov projection. Instead, restrictions to zero temperature were made and absence of unphysical contributions to the ground-state was assumed. We question this belief by exact diagonalization of several small-system counterexamples where unphysical states do contribute to the ground state. We then introduce Popov-Fedotov projection to pseudo-fermion functional renormalization, enabling finite temperature computations with only minor technical modifications to the method. At large and intermediate temperatures, our results are perturbatively controlled and we confirm their accuracy in benchmark calculations. At lower temperatures, the accuracy degrades due to truncation errors in the hierarchy of flow equations. Interestingly, these problems cannot be alleviated by switching to the parquet approximation. We introduce the spin projection as a method-intrinsic quality check. We also show that finite temperature magnetic ordering transitions can be studied via finite-size scaling.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源