论文标题

超越心脏杂音检测:Phonocartiogram的自动杂音分级

Beyond Heart Murmur Detection: Automatic Murmur Grading from Phonocardiogram

论文作者

Elola, Andoni, Aramendi, Elisabete, Oliveira, Jorge, Renna, Francesco, Coimbra, Miguel T., Reyna, Matthew A., Sameni, Reza, Clifford, Gari D., Rad, Ali Bahrami

论文摘要

目的:杂音是异常的心脏声音,由专家通过心脏听觉确定。杂音级是杂音强度的定量度量,与患者的临床状况密切相关。这项工作旨在估算来自多个听诊位置的每个患者的杂音级(即缺乏,柔软,响亮),这些位置来自低资产阶级农村地区的大量儿科患者。方法:将每个PCG记录的MEL频谱图表示具有15个卷积残留神经网络的集合,并具有通道注意机制,以对每个PCG记录进行分类。每个患者的最终杂音等级是根据拟议的决策规则得出的,并考虑了所有可用记录的估计标签。所提出的方法在数据集中进行了交叉验证,该数据集由1007名患者的3456个PCG记录组成,并使用分层十倍的交叉验证。此外,该方法在由442名患者的1538张PCG记录组成的隐藏测试集上进行了测试。结果:就敏感性和F1分数的未加权平均值而言,患者级杂音等级的总体交叉验证性能分别为86.3%和81.6%。缺乏,柔软和大声的杂音的敏感性(和F1分数)分别为90.7%(93.6%),75.8%(66.8%)和92.3%(84.2%)。在测试集中,该算法的敏感性平均值为80.4%,F1得分为75.8%。结论:这项研究为低资源环境中的算法预筛查提供了一种潜在的方法,其专家筛查成本相对较高。意义:所提出的方法代表了超出杂音的显着步骤,提供了强度的表征,这可能会增强临床结局的分类。

Objective: Murmurs are abnormal heart sounds, identified by experts through cardiac auscultation. The murmur grade, a quantitative measure of the murmur intensity, is strongly correlated with the patient's clinical condition. This work aims to estimate each patient's murmur grade (i.e., absent, soft, loud) from multiple auscultation location phonocardiograms (PCGs) of a large population of pediatric patients from a low-resource rural area. Methods: The Mel spectrogram representation of each PCG recording is given to an ensemble of 15 convolutional residual neural networks with channel-wise attention mechanisms to classify each PCG recording. The final murmur grade for each patient is derived based on the proposed decision rule and considering all estimated labels for available recordings. The proposed method is cross-validated on a dataset consisting of 3456 PCG recordings from 1007 patients using a stratified ten-fold cross-validation. Additionally, the method was tested on a hidden test set comprised of 1538 PCG recordings from 442 patients. Results: The overall cross-validation performances for patient-level murmur gradings are 86.3% and 81.6% in terms of the unweighted average of sensitivities and F1-scores, respectively. The sensitivities (and F1-scores) for absent, soft, and loud murmurs are 90.7% (93.6%), 75.8% (66.8%), and 92.3% (84.2%), respectively. On the test set, the algorithm achieves an unweighted average of sensitivities of 80.4% and an F1-score of 75.8%. Conclusions: This study provides a potential approach for algorithmic pre-screening in low-resource settings with relatively high expert screening costs. Significance: The proposed method represents a significant step beyond detection of murmurs, providing characterization of intensity which may provide a enhanced classification of clinical outcomes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源