论文标题

朱莉娅(Julia

Julia sets with Ahlfors-regular conformal dimension one

论文作者

Park, Insung

论文摘要

对于批判性有限的双曲合理地图$ f $,我们表明朱莉娅集合$ \ mathcal {j} _f $具有ahlfors-refformal尺寸一个,并且仅当f是钩编织图,即,即$ f $ invariant Graph contripation $ f $ invariant Graph包含$ f polication $ f的$ f zer tobolation $ f zer zer topitogity $ f | _g pote toptoical topitogity $ f pote toptogical toberial。我们使用有限的细分规则来获得图形虚拟内态性,这是对后有限的有限理性地图的一维简化,并近似图形虚拟内态的渐变形成式共形能量,以估算AHLFORS期权的正形尺寸。特别是,我们提出了一个减少有限细分规则的想法,并证明在理性地图的分解下,渐近保形能量的单调性。

For a post-critically finite hyperbolic rational map $f$, we show that the Julia set $\mathcal{J}_f$ has Ahlfors-regular conformal dimension one if and only if f is a crochet map, i.e., there is an $f$-invariant graph G containing the post-critical set such that $f|_G$ has topological entropy zero. We use finite subdivision rules to obtain graph virtual endomorphisms, which are 1-dimensional simplifications of post-critically finite rational maps, and approximate the asymptotic conformal energies of the graph virtual endomorphisms to estimate the Ahlfors-regular conformal dimensions. In particular, we develop an idea of reducing finite subdivision rules and prove the monotonicity of asymptotic conformal energies under the decomposition of rational maps.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源