论文标题
安全的强化学习动态高维机器人任务:导航,操纵,互动
Safe Reinforcement Learning of Dynamic High-Dimensional Robotic Tasks: Navigation, Manipulation, Interaction
论文作者
论文摘要
安全是每个机器人平台的关键特性:任何控制政策始终遵守执行器限制,并避免与环境和人类发生冲突。在加强学习中,安全对于探索环境而不会造成任何损害更为基础。尽管有许多针对安全勘探问题的建议解决方案,但只有少数可以处理现实世界的复杂性。本文介绍了一种安全探索的新表述,用于增强各种机器人任务。我们的方法适用于广泛的机器人平台,即使在通过探索约束歧管的切线空间中学到的复杂碰撞约束下,也可以执行安全。我们提出的方法在模拟的高维和动态任务中实现了最先进的表现,同时避免与环境发生冲突。我们在Tiago ++机器人上展示了我们学识渊博的控制器的安全现实部署,在操纵和人类机器人交互任务中实现了出色的性能。
Safety is a crucial property of every robotic platform: any control policy should always comply with actuator limits and avoid collisions with the environment and humans. In reinforcement learning, safety is even more fundamental for exploring an environment without causing any damage. While there are many proposed solutions to the safe exploration problem, only a few of them can deal with the complexity of the real world. This paper introduces a new formulation of safe exploration for reinforcement learning of various robotic tasks. Our approach applies to a wide class of robotic platforms and enforces safety even under complex collision constraints learned from data by exploring the tangent space of the constraint manifold. Our proposed approach achieves state-of-the-art performance in simulated high-dimensional and dynamic tasks while avoiding collisions with the environment. We show safe real-world deployment of our learned controller on a TIAGo++ robot, achieving remarkable performance in manipulation and human-robot interaction tasks.