论文标题
疟疾检测的深度学习和机器学习:概述,挑战和未来方向
Deep learning and machine learning for Malaria detection: overview, challenges and future directions
论文作者
论文摘要
为了产生最大的影响,必须使用基于证据的决策制定公共卫生计划。创建机器学习算法是为了收集,存储,处理和分析数据以提供知识和指导决策。任何监视系统的关键部分是图像分析。截至最近,计算机视觉和机器学习的社区最终对此感到好奇。这项研究使用各种机器学习和图像处理方法来检测和预测疟疾疾病。在我们的研究中,我们发现了深度学习技术作为具有更广泛适用于疟疾检测的智能工具的潜力,这些工具可以通过协助诊断病情来使医生受益。我们研究了针对计算机框架和组织的深度学习的共同限制,计算需要准备数据,准备开销,实时执行和解释能力,并发现未来的询问轴承关注这些限制。
To have the greatest impact, public health initiatives must be made using evidence-based decision-making. Machine learning Algorithms are created to gather, store, process, and analyse data to provide knowledge and guide decisions. A crucial part of any surveillance system is image analysis. The communities of computer vision and machine learning has ended up curious about it as of late. This study uses a variety of machine learning and image processing approaches to detect and forecast the malarial illness. In our research, we discovered the potential of deep learning techniques as smart tools with broader applicability for malaria detection, which benefits physicians by assisting in the diagnosis of the condition. We examine the common confinements of deep learning for computer frameworks and organising, counting need of preparing data, preparing overhead, realtime execution, and explain ability, and uncover future inquire about bearings focusing on these restrictions.