论文标题

液滴的惯性毛细管反弹,影响流体浴

Inertio-capillary rebound of a droplet impacting a fluid bath

论文作者

Alventosa, Luke F. L., Cimpeanu, Radu, Harris, Daniel M.

论文摘要

在实验和理论上研究了影响深水浴的液滴的反弹。毫米滴是使用压电液滴点发生器生成的,通常会影响相同流体的浴缸。直接将液滴轨迹和其他反弹指标的测量值与线性准电位模型的预测以及不稳定的Navier-Stokes方程的完全分辨直接数值模拟(DNS)进行了比较。除了液滴轨迹外,这两种模型都可以解决时间相关的浴缸和液滴形状。在准电位模型中,使用正交函数分解液滴和浴缸形状,导致两组使用隐式数值方法求解的耦合阻尼的线性谐波振荡器方程。滴的液滴动力学不足的动力学通过单点运动匹配条件直接与浴缸的响应耦合,我们证明这是我们感兴趣的参数方面的有效模型。从重力和粘性效应都可以忽略不计,重力或粘度增加的惯性毛细管限制从恢复系数降低和接触时间增加。惯性毛细血管极限定义了可能仅取决于韦伯的数字,对液滴浴可能的恢复系数的上限定义了上限。准潜电模型能够合理化恢复系数的历史实验测量,首先由Jayaratne and Mason(1964)提出。

The rebound of droplets impacting a deep fluid bath is studied both experimentally and theoretically. Millimetric drops are generated using a piezoelectric droplet-on-demand generator and normally impact a bath of the same fluid. Measurements of the droplet trajectory and other rebound metrics are compared directly to the predictions of a linear quasi-potential model, as well as fully resolved direct numerical simulations (DNS) of the unsteady Navier-Stokes equations. Both models resolve the time-dependent bath and droplet shapes in addition to the droplet trajectory. In the quasi-potential model, the droplet and bath shape are decomposed using orthogonal function decompositions leading to two sets of coupled damped linear harmonic oscillator equations solved using an implicit numerical method. The underdamped dynamics of the drop are directly coupled to the response of the bath through a single-point kinematic match condition which we demonstrate to be an effective and efficient model in our parameter regime of interest. Starting from the inertio-capillary limit in which both gravitational and viscous effects are negligible, increases in gravity or viscosity lead to a decrease in the coefficient of restitution and an increase in the contact time. The inertio-capillary limit defines an upper bound on the possible coefficient of restitution for droplet-bath impact, depending only on the Weber number. The quasi-potential model is able to rationalize historical experimental measurements for the coefficient of restitution, first presented by Jayaratne and Mason (1964).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源