论文标题
状态空间中的有限温度量子冷凝:一般证明
Finite temperature quantum condensations in the space of states: General Proof
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
We formalize and prove the extension to finite temperature of a class of quantum phase transitions, acting as condensations in the space of states, recently introduced and discussed at zero temperature~(Ostilli and Presilla 2021 \textit{J. Phys. A: Math. Theor.} \textbf{54} 055005). In details, we find that if, for a quantum system at canonical thermal equilibrium, one can find a partition of its Hilbert space $\mathcal{H}$ into two subspaces, $\mathcal{H}_\mathrm{cond}$ and $\mathcal{H}_\mathrm{norm}$, such that, in the thermodynamic limit, $\dim \mathcal{H}_\mathrm{cond}/ \dim \mathcal{H} \to 0$ and the free energies of the system restricted to these subspaces cross each other for some value of the Hamiltonian parameters, then, the system undergoes a first-order quantum phase transition driven by those parameters. The proof is based on an exact probabilistic representation of quantum dynamics at an imaginary time identified with the inverse temperature of the system. We also show that the critical surface has universal features at high and low temperatures.