论文标题
控制基于绝对电位和机器学习的随机动力学系统的平均退出时间
Controlling mean exit time of stochastic dynamical systems based on quasipotential and machine learning
论文作者
论文摘要
在存在白噪声的情况下,在各个科学领域,在存在白噪声的情况下逃脱吸引盆地的平均退出时间至关重要。在这项工作中,我们提出了一种策略,以控制一般随机动力学系统的平均退出时间,以基于准潜电概念和机器学习实现所需的价值。具体来说,我们开发了一个神经网络体系结构来计算全局准能函数。然后,我们设计了一种系统的迭代数值算法来计算给定平均退出时间的控制器。此外,我们在有效的汉密尔顿 - 雅各比计划和受过训练的神经网络的帮助下确定了亚稳态吸引子之间的最可能路径。数值实验表明,我们的控制策略是有效且足够准确的。
The mean exit time escaping basin of attraction in the presence of white noise is of practical importance in various scientific fields. In this work, we propose a strategy to control mean exit time of general stochastic dynamical systems to achieve a desired value based on the quasipotential concept and machine learning. Specifically, we develop a neural network architecture to compute the global quasipotential function. Then we design a systematic iterated numerical algorithm to calculate the controller for a given mean exit time. Moreover, we identify the most probable path between metastable attractors with help of the effective Hamilton-Jacobi scheme and the trained neural network. Numerical experiments demonstrate that our control strategy is effective and sufficiently accurate.