论文标题

改进和广义算法燃烧平面点集

Improved and Generalized Algorithms for Burning a Planar Point Set

论文作者

Gokhale, Prashant, Keil, J. Mark, Mondal, Debajyoti

论文摘要

鉴于飞机上的一组$ p $点,点燃烧过程是一个离散的时间过程,可以燃烧所有$ p $的点,其中必须在给定点开始大火。具体而言,点燃烧过程始于$ p $的单个燃烧点,在随后的每个步骤中,燃烧了飞机中的所有点,与当前燃烧点一单位距离内,以及另一个未燃烧点的$ p $(如果存在)。 $ p $的点燃烧数量是燃烧$ p $的所有点所需的最小步骤。如果我们允许在任何地方开火,则将燃烧过程称为一个燃烧过程,相应的燃烧数量在任何地方燃烧的数字都称为。已知计算点和任何地方燃烧的数字是NP-HARD。在本文中,我们表明这两个问题都在一个维度中允许PTA。然后,我们表明,在二维中,点燃烧和燃烧的任何位置为$(1.96296+\ varepsilon)$和$(1.92188+ \ varepsilon)$可分别可在每一个$ \ varepsilon> 0 $中近似$ 0 $,从而改善了先前已知的$ \ varepsilon $ corper for terrapsilon> 0 $。我们还观察到,可以利用设定覆盖问题的已知结果,以获得2个标记,以在给定数量的步骤中燃烧最大点数。我们展示了结果如何概括,如果我们允许积分具有不同的火灾传播率。最后,我们证明,即使将燃烧的源作为输入给出,发现点燃烧序列本身也是NP-HARD。

Given a set $P$ of points in the plane, a point burning process is a discrete time process to burn all the points of $P$ where fires must be initiated at the given points. Specifically, the point burning process starts with a single burnt point from $P$, and at each subsequent step, burns all the points in the plane that are within one unit distance from the currently burnt points, as well as one other unburnt point of $P$ (if exists). The point burning number of $P$ is the smallest number of steps required to burn all the points of $P$. If we allow the fire to be initiated anywhere, then the burning process is called an anywhere burning process, and the corresponding burning number is called anywhere burning number. Computing the point and anywhere burning number is known to be NP-hard. In this paper we show that both these problems admit PTAS in one dimension. We then show that in two dimensions, point burning and anywhere burning are $(1.96296+\varepsilon)$ and $(1.92188+\varepsilon)$ approximable, respectively, for every $\varepsilon>0$, which improves the previously known $(2+\varepsilon)$ factor for these problems. We also observe that a known result on set cover problem can be leveraged to obtain a 2-approximation for burning the maximum number of points in a given number of steps. We show how the results generalize if we allow the points to have different fire spreading rates. Finally, we prove that even if the burning sources are given as input, finding a point burning sequence itself is NP-hard.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源