论文标题
部分可观测时空混沌系统的无模型预测
TrustToken, a Trusted SoC solution for Non-Trusted Intellectual Property (IP)s
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Secure and trustworthy execution in heterogeneous SoCs is a major priority in the modern computing system. Security of SoCs mainly addresses two broad layers of trust issues: 1. Protection against hardware security threats(Side-channel, IP Privacy, Cloning, Fault Injection, and Denial of Service); and 2. Protection against malicious software attacks running on SoC processors. To resist malicious software-level attackers from gaining unauthorized access and compromising security, we propose a root of trust-based trusted execution mechanism \textbf{\textit{(named as \textbf{TrustToken}) }}. TrustToken builds a security block to provide a root of trust-based IP security: secure key generation and truly random source. \textbf{TrustToken} only allows trusted communication between the non-trusted third-party IP and the rest of the SoC world by providing essential security features, i.e., secure, isolated execution, and trusted user interaction. The proposed design achieves this by interconnecting the third-party IP interface to \textbf{TrustToken} Controller and checking IP authorization(Token) signals \texttt{`correctness'} at run-time. \textbf{TrustToken} architecture shows a very low overhead resource utilization LUT (618, 1.16 \%), FF (44, 0.04 \%), and BUFG (2 , 6.25\%) in implementation. The experiment results show that TrustToken can provide a secure, low-cost, and trusted solution for non-trusted SoC IPs.