论文标题

在定期强制的恒温链II中的热流II

Heat flow in a periodically forced, thermostatted chain II

论文作者

Komorowski, Tomasz, Lebowitz, Joel L., Olla, Stefano

论文摘要

我们为固定力在其右侧的周期性力量,并与左侧的热浴接触,从而为固定力的固定链的温度得出一个宏观的热方程。 散装中的显微动力学由汉密尔顿运动方程式给出,以及在指数时为每个粒子独立发生的粒子的速度的逆转,速率$γ$。后者产生有限的热电导率。从$ N $颗粒链的初始概率分布开始,我们计算由局部能量和电流的预期值给出的局部温度。扩展空间和时间扩散地产生,在$ n \ to+\ infty $限制中,宏观温度剖面的加热方程$ t(t,u),$ $ t> 0 $,$ u \ in [0,1] $。它应在初始条件$ t(0,u)$中解决,并指定$ t(t,0)= t _- $,左热储层的温度和固定的热量$ j $,以$ u = 1 $输入系统。 $ J $是定期力量完成的工作,该工作是针对每个$ n $明确计算的。

We derive a macroscopic heat equation for the temperature of a pinned harmonic chain subject to a periodic force at its right side and in contact with a heat bath at its left side. The microscopic dynamics in the bulk is given by the Hamiltonian equation of motion plus a reversal of the velocity of a particle occurring independently for each particle at exponential times, with rate $γ$. The latter produces a finite heat conductivity. Starting with an initial probability distribution for a chain of $n$ particles we compute the local temperature given by the expected value of the local energy and current. Scaling space and time diffusively yields, in the $n\to+\infty$ limit, the heat equation for the macroscopic temperature profile $T(t,u),$ $t>0$, $u \in [0,1]$. It is to be solved for initial conditions $T(0,u)$ and specified $T(t,0)=T_-$, the temperature of the left heat reservoir and a fixed heat flux $J$, entering the system at $u=1$. $J$ is the work done by the periodic force which is computed explicitly for each $n$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源