论文标题

隔离中子星的3D磁热演化代码,Matins:磁场形式主义

3D code for MAgneto-Thermal evolution in Isolated Neutron Stars, MATINS: The Magnetic Field Formalism

论文作者

Dehman, Clara, Viganò, Daniele, Pons, José A., Rea, Nanda

论文摘要

中子星的内部强磁场的长期演变需要特定的数值建模。中子恒星观察到的现象学的多样性表明它们的磁拓扑相当复杂,需要三维模拟,例如解释观察到的爆发机制和表面热点的创建。我们提出了Matins,这是一种新的三维数值代码,用于中子恒星中的磁热演化,基于有限体积方案,该方案采用了坐标的立方体球形系统。在这首第一项工作中,我们专注于地壳磁性演化,并在中子恒星结构,组成和电导率上包括了简单的温度演化曲线,包括对中子恒星结构,组成和电导率的计算。 Matins遵循具有复杂的非轴对称拓扑结构和主要的霍尔拖式术语的强场(1E14-1E15高斯)的演变,并且适用于处理尖锐的电流板。在介绍了我们的方法和一些测试的技术描述之后,我们介绍了现实中子星形地壳中非线性场进化的长期模拟。结果表明,非轴对称大厅级联如何在不同的空间尺度上重新分布能量。在探索了不同的初始拓扑结构之后,我们得出结论,在几十千元中,小尺度发生了多背和环形组件之间的能量的焦点。但是,磁场可以保持对初始大型的强烈记忆,这些大尺度很难重组或创建。这表明在中子恒星形成期间获得的大规模构型对于确定在任何进化阶段确定场拓扑至关重要。

The long-term evolution of the internal, strong magnetic fields of neutron stars needs a specific numerical modelling. The diversity of the observed phenomenology of neutron stars indicates that their magnetic topology is rather complex and three-dimensional simulations are required, for example, to explain the observed bursting mechanisms and the creation of surface hotspots. We present MATINS, a new three dimensions numerical code for magneto-thermal evolution in neutron stars, based on a finite-volume scheme that employs the cubed-sphere system of coordinates. In this first work, we focus on the crustal magnetic evolution, with the inclusion of realistic calculations for the neutron star structure, composition and electrical conductivity assuming a simple temperature evolution profile. MATINS follows the evolution of strong fields (1e14-1e15 Gauss) with complex non-axisymmetric topologies and dominant Hall-drift terms, and it is suitable for handling sharp current sheets. After introducing the technical description of our approach and some tests, we present long-term simulations of the non-linear field evolution in realistic neutron star crusts. The results show how the non-axisymmetric Hall cascade redistributes the energy over different spatial scales. Following the exploration of different initial topologies, we conclude that during a few tens of kyr, an equipartition of energy between the poloidal and toroidal components happens at small-scales. However, the magnetic field keeps a strong memory of the initial large-scales, which are much harder to be restructured or created. This indicates that large-scale configuration attained during the neutron star formation is crucial to determine the field topology at any evolution stage.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源