论文标题
复杂WoundDB:自动复杂伤口组织分类的数据库
ComplexWoundDB: A Database for Automatic Complex Wound Tissue Categorization
论文作者
论文摘要
复杂的伤口通常会面临局部或全部损失皮肤厚度,从而通过次要意图愈合。它们可以是急性或慢性的,可以发现感染,缺血和组织坏死,并与全身性疾病相关。全球研究机构报告了无数案件,最终涉及严重的公共卫生问题,因为它们涉及人力资源(例如医师和医疗保健专业人员),并对生活质量产生负面影响。本文提出了一个新的数据库,用于自动将复杂伤口自动分类为五个类别,即非缠绕区域,肉芽,纤维蛋白样组织和干性坏死,血肿。这些图像包括由压力,血管溃疡,糖尿病,燃烧和手术干预后的并发症引起的复杂伤口的不同情况。该数据集(称为ComplexWoundDB)是独一无二的,因为它可以从野外获得的27美元图像中的像素级分类(即,在患者的房屋中收集图像,并由四名卫生专业人员标记。用不同的机器学习技术进行的进一步实验证明了解决计算机辅助复杂伤口组织分类问题的挑战。手稿阐明了该地区未来的方向,在文献中广泛使用的其他数据库中进行了详细比较。
Complex wounds usually face partial or total loss of skin thickness, healing by secondary intention. They can be acute or chronic, figuring infections, ischemia and tissue necrosis, and association with systemic diseases. Research institutes around the globe report countless cases, ending up in a severe public health problem, for they involve human resources (e.g., physicians and health care professionals) and negatively impact life quality. This paper presents a new database for automatically categorizing complex wounds with five categories, i.e., non-wound area, granulation, fibrinoid tissue, and dry necrosis, hematoma. The images comprise different scenarios with complex wounds caused by pressure, vascular ulcers, diabetes, burn, and complications after surgical interventions. The dataset, called ComplexWoundDB, is unique because it figures pixel-level classifications from $27$ images obtained in the wild, i.e., images are collected at the patients' homes, labeled by four health professionals. Further experiments with distinct machine learning techniques evidence the challenges in addressing the problem of computer-aided complex wound tissue categorization. The manuscript sheds light on future directions in the area, with a detailed comparison among other databased widely used in the literature.