论文标题
基于NOMA的车辆边缘计算中的联合任务卸载和资源优化:游戏理论DRL方法
Joint Task Offloading and Resource Optimization in NOMA-based Vehicular Edge Computing: A Game-Theoretic DRL Approach
论文作者
论文摘要
车辆边缘计算(VEC)成为开发新兴智能运输系统的有希望的范式。然而,有限的资源和巨大的传输需求为实施具有严格截止日期要求的车辆应用带来了巨大挑战。这项工作介绍了VEC中基于非正交的多访问(NOMA)架构,在该体系结构中,在该体系结构中配合了异质的边缘节点进行实时任务处理。我们通过考虑内部边缘和边缘间干涉率并通过共同优化任务卸载和资源分配,旨在最大程度地提高服务比率,从而得出了车辆到基础结构(V2I)传输模型,并通过共同优化任务卸载和资源分配来制定合作资源优化(CRO)问题。此外,我们将CRO分解为两个子问题,即任务卸载和资源分配。特别是,任务卸载子问题被建模为确切的潜在游戏(EPG),并提出了一个多代理分布式分布的深层确定性策略梯度(MAD4PG)来达到NASH平衡。资源分配子问题分为两个独立的凸优化问题,并使用基于梯度的迭代方法和KKT条件提出了最佳解决方案。最后,我们基于现实世界的车辆轨迹构建了模拟模型,并进行了全面的性能评估,从而最终证明了所提出的解决方案的优越性。
Vehicular edge computing (VEC) becomes a promising paradigm for the development of emerging intelligent transportation systems. Nevertheless, the limited resources and massive transmission demands bring great challenges on implementing vehicular applications with stringent deadline requirements. This work presents a non-orthogonal multiple access (NOMA) based architecture in VEC, where heterogeneous edge nodes are cooperated for real-time task processing. We derive a vehicle-to-infrastructure (V2I) transmission model by considering both intra-edge and inter-edge interferences and formulate a cooperative resource optimization (CRO) problem by jointly optimizing the task offloading and resource allocation, aiming at maximizing the service ratio. Further, we decompose the CRO into two subproblems, namely, task offloading and resource allocation. In particular, the task offloading subproblem is modeled as an exact potential game (EPG), and a multi-agent distributed distributional deep deterministic policy gradient (MAD4PG) is proposed to achieve the Nash equilibrium. The resource allocation subproblem is divided into two independent convex optimization problems, and an optimal solution is proposed by using a gradient-based iterative method and KKT condition. Finally, we build the simulation model based on real-world vehicle trajectories and give a comprehensive performance evaluation, which conclusively demonstrates the superiority of the proposed solutions.