论文标题

在协调能源系统中改善气体网络模型的机器学习

Machine Learning for Improved Gas Network Models in Coordinated Energy Systems

论文作者

Arrigo, Adriano, Dolányi, Mihály, Bruninx, Kenneth, Toubeau, Jean-François

论文摘要

当前的能源转变促进了电力和天然气系统之间的运行融合。在这个方向上,改善协调能力和气体调度内非凸天然气体流动动力学的建模至关重要。在这项工作中,我们提出了一种神经网络受限的优化方法,该方法包括基于监督机器学习的Weymouth方程的回归模型。 Weymouth方程将气体流动连接到每个管道的入口和出口压力,并通过二次相等性,该平等被神经网络捕获。后者是通过可处理的混合插入线性程序编码为约束集的。此外,我们提出的框架能够考虑双向性,而无需求助于复杂且潜在的不准确的引发方法。我们通过引入激活函数的重新制定来进一步增强我们的模型,从而提高计算效率。一项基于现实生活中的比利时力量和气体系统的广泛数值研究表明,所提出的方法在准确性和障碍方面产生了有希望的结果。

The current energy transition promotes the convergence of operation between the power and natural gas systems. In that direction, it becomes paramount to improve the modeling of non-convex natural gas flow dynamics within the coordinated power and gas dispatch. In this work, we propose a neural-network-constrained optimization method which includes a regression model of the Weymouth equation, based on supervised machine learning. The Weymouth equation links gas flow to inlet and outlet pressures for each pipeline via a quadratic equality, which is captured by a neural network. The latter is encoded via a tractable mixed-integer linear program into the set of constraints. In addition, our proposed framework is capable of considering bidirectionality without having recourse to complex and potentially inaccurate convexification approaches. We further enhance our model by introducing a reformulation of the activation function, which improves the computational efficiency. An extensive numerical study based on the real-life Belgian power and gas systems shows that the proposed methodology yields promising results in terms of accuracy and tractability.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源