论文标题

信仰:在GPU上进行变压器验证的有效框架

Faith: An Efficient Framework for Transformer Verification on GPUs

论文作者

Feng, Boyuan, Tang, Tianqi, Wang, Yuke, Chen, Zhaodong, Wang, Zheng, Yang, Shu, Xie, Yuan, Ding, Yufei

论文摘要

变压器验证引起了机器学习研究和行业的越来越多的关注。它正式验证了变压器对对抗性攻击的鲁棒性,例如用同义词交换单词。但是,由于以中边界为中心的计算,变压器验证的性能仍然不满意,这与标准神经网络有显着差异。在本文中,我们提出了信仰,这是用于GPU上的变压器验证的有效框架。我们首先提出一个语义意识的计算图转换,以识别语义信息,例如变形金刚验证中的界限计算。我们利用此类语义信息以在计算图级别启用有效的内核融合。其次,我们提出了一个验证专门的内核手工艺者,以有效地将变压器验证映射到现代GPU。该手工艺者利用了一组GPU硬件支持,以加快通常是内存密集型的验证专用操作。第三,我们提出了一个专家指导的自动调整,以纳入有关GPU后端的专家知识,以促进大型搜索空间探索。广泛的评估表明,Faith在最先进的框架上实现了$ 2.1 \ times $至$ 3.4 \ times $($ 2.6 \ times $)的加速。

Transformer verification draws increasing attention in machine learning research and industry. It formally verifies the robustness of transformers against adversarial attacks such as exchanging words in a sentence with synonyms. However, the performance of transformer verification is still not satisfactory due to bound-centric computation which is significantly different from standard neural networks. In this paper, we propose Faith, an efficient framework for transformer verification on GPUs. We first propose a semantic-aware computation graph transformation to identify semantic information such as bound computation in transformer verification. We exploit such semantic information to enable efficient kernel fusion at the computation graph level. Second, we propose a verification-specialized kernel crafter to efficiently map transformer verification to modern GPUs. This crafter exploits a set of GPU hardware supports to accelerate verification specialized operations which are usually memory-intensive. Third, we propose an expert-guided autotuning to incorporate expert knowledge on GPU backends to facilitate large search space exploration. Extensive evaluations show that Faith achieves $2.1\times$ to $3.4\times$ ($2.6\times$ on average) speedup over state-of-the-art frameworks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源