论文标题
通过注意串联体积准确有效的立体声匹配
Accurate and Efficient Stereo Matching via Attention Concatenation Volume
论文作者
论文摘要
立体声匹配是许多视觉和机器人应用程序的基本构建块。信息性和简洁的成本量表示对于高准确性和效率的立体声匹配至关重要。在本文中,我们提出了一种新颖的成本量构建方法,称为注意串联体积(ACV),该方法从相关线索中产生了注意力,以抑制冗余信息并增强串联体积中与匹配相关的信息。可以将ACV无缝嵌入大多数立体声匹配网络中,所得网络可以使用更轻巧的聚合网络,同时获得更高的精度。我们进一步设计了一个快速版本的ACV版本来实现实时性能,名为Fast-ACV,它产生了很高的可能性差异假设以及相应的注意力权重,来自低分辨率相关线索的相应注意力权重可以显着降低计算和记忆成本,同时保持令人满意的精度。我们快速ACV的核心思想是音量注意传播(VAP),它可以自动从上采样的相关量中选择准确的相关值,并将这些准确的值传播到具有模棱两可的相关线索的周围环境像素。 Furthermore, we design a highly accurate network ACVNet and a real-time network Fast-ACVNet based on our ACV and Fast-ACV respectively, which achieve the state-of-the-art performance on several benchmarks (i.e., our ACVNet ranks the 2nd on KITTI 2015 and Scene Flow, and the 3rd on KITTI 2012 and ETH3D among all the published methods; our Fast-ACVNet outperforms almost all现场流动的最先进的实时方法,Kitti 2012和2015,同时具有更好的泛化能力)
Stereo matching is a fundamental building block for many vision and robotics applications. An informative and concise cost volume representation is vital for stereo matching of high accuracy and efficiency. In this paper, we present a novel cost volume construction method, named attention concatenation volume (ACV), which generates attention weights from correlation clues to suppress redundant information and enhance matching-related information in the concatenation volume. The ACV can be seamlessly embedded into most stereo matching networks, the resulting networks can use a more lightweight aggregation network and meanwhile achieve higher accuracy. We further design a fast version of ACV to enable real-time performance, named Fast-ACV, which generates high likelihood disparity hypotheses and the corresponding attention weights from low-resolution correlation clues to significantly reduce computational and memory cost and meanwhile maintain a satisfactory accuracy. The core idea of our Fast-ACV is volume attention propagation (VAP) which can automatically select accurate correlation values from an upsampled correlation volume and propagate these accurate values to the surroundings pixels with ambiguous correlation clues. Furthermore, we design a highly accurate network ACVNet and a real-time network Fast-ACVNet based on our ACV and Fast-ACV respectively, which achieve the state-of-the-art performance on several benchmarks (i.e., our ACVNet ranks the 2nd on KITTI 2015 and Scene Flow, and the 3rd on KITTI 2012 and ETH3D among all the published methods; our Fast-ACVNet outperforms almost all state-of-the-art real-time methods on Scene Flow, KITTI 2012 and 2015 and meanwhile has better generalization ability)