论文标题

SQCD $ _ {3} $的手性二元性与D型超势

Chiral dualities for SQCD$_{3}$ with D-type superpotential

论文作者

Amariti, Antonio, Morgante, Davide

论文摘要

我们以$ 3D $ $ \ text {u}(n_ {c})_ k $手动sqcd的$ 3D $ \ text {u}学习二元性,带有$ d_ {n+2} $ - 键入superpotential,with $ n $奇数。我们从基本原理和反符号和Chern-Simons水平的数量方面对这种二元性进行了完整的分类。分类是通过实际质量获得的,希格斯从非手续二元性中流动,我们检查了分区函数级别上新的非手续二元性的一致性。我们还检查分区函数之间的积分身份中出现的复杂阶段与计算为有效Chern-Simons级别的量子校正的接触项一致。 $ \ text {su}(n_ {c})_ k $ case是通过从$ \ text {u}(n_ {c})$ dualities中衡量拓扑对称性来恢复的。最后,我们考虑了$ \ text {usp}(2n_ {c})_ {2k} $,带有两个反对称张量,$ d_ {n+2} $ - 键入superpotential。

We study dualities for $3d$ $\text{U}(N_{c})_k$ chiral SQCD with $D_{n+2}$-type superpotential, with $n$ odd. We give a complete classification of such dualities in terms of the number of fundamentals and anti-fundamentals and the Chern-Simons level. The classification is obtained by real mass and Higgs flows from non-chiral dualities and we check the consistency of the new non-chiral dualities at the level of the partition function. We we also check that the complex phases appearing in the integral identities between the partition functions are consistent with the contact terms computed as quantum corrections to the effective Chern-Simons level. The $\text{SU}(N_{c})_k$ cases are recovered by gauging the topological symmetry from the $\text{U}(N_{c})$ dualities. Finally, we consider the case of $\text{USp}(2N_{c})_{2k}$ with two antisymmetric tensors and $D_{n+2}$-type superpotential.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源