论文标题
pólya的特征值猜想对于球体是错误的
Pólya's eigenvalue conjecture is false for spheres
论文作者
论文摘要
通过将球体的拉普拉斯光谱与其Weyl函数$ w(x)= \ frac {ω_n} {((2π)^n} | \ mathbb {s} s}^n | x^{N | x^{n/2} $,我们表明PRAURE of PRAURE ruele rune rune r r ranemann no sunder and ruce ruele ruate r ranemann note,具有正截面曲率的歧管。
By comparing the Laplace spectrum of the sphere $\mathbb{S}^n$ to its Weyl function $w(x) = \frac{ω_n}{(2π)^n}|\mathbb{S}^n|x^{n/2}$, we show that no analogue of Pólya's eigenvalue conjecture holds in general for Riemannian manifolds with positive sectional curvature.