论文标题

将描述复杂性与熵有关

Relating description complexity to entropy

论文作者

Jaakkola, Reijo, Kuusisto, Antti, Vilander, Miikka

论文摘要

我们演示了熵和描述复杂性之间的一些新颖的联系,这是一个指指定给定特性的最小公式长度的概念。让MLU成为通过使用通用模态扩展命题逻辑获得的逻辑,并让GMLU为具有计数能力的相应扩展。在有限的情况下,MLU可以表达用于指定可变分配的集,而GMLU则表达了多弹性。我们表明,对于MLU,具有最大玻尔兹曼熵的模型类是具有最大描述复杂性的模型类。关于GMLU,我们表明,预期的玻尔兹曼熵在渐近上等同于预期的描述复杂性乘以所考虑的命题符号的数量。为了对比这些结果,我们表明,当我们考虑考虑具有更高关系的词汇上的一阶逻辑时,这种链接断开。为了建立上述结果,我们表明几乎所有有限模型都需要相对较大的FO形式来定义它们。我们的结果与Kolmogorov的复杂性与熵之间的联系有关,展示了一种在基于逻辑的场景中构想这种结果的方法,在这种情况下,关系结构通过不同大小的公式进行分类。

We demonstrate some novel links between entropy and description complexity, a notion referring to the minimal formula length for specifying given properties. Let MLU be the logic obtained by extending propositional logic with the universal modality, and let GMLU be the corresponding extension with the ability to count. In the finite, MLU is expressively complete for specifying sets of variable assignments, while GMLU is expressively complete for multisets. We show that for MLU, the model classes with maximal Boltzmann entropy are the ones with maximal description complexity. Concerning GMLU, we show that expected Boltzmann entropy is asymptotically equivalent to expected description complexity multiplied by the number of proposition symbols considered. To contrast these results, we show that this link breaks when we move to considering first-order logic FO over vocabularies with higher-arity relations. To establish the aforementioned result, we show that almost all finite models require relatively large FO-formulas to define them. Our results relate to links between Kolmogorov complexity and entropy, demonstrating a way to conceive such results in the logic-based scenario where relational structures are classified by formulas of different sizes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源