论文标题

量子衍生物的奇异值的渐近学

Asymptotics of singular values for quantum derivatives

论文作者

Frank, Rupert L., Sukochev, Fedor, Zanin, Dmitriy

论文摘要

我们从homgeneous sobolev space $ \ dot {w}^1_d(\ mathbb {r}^d)$ on $ \ mathbb {r}^d。 f \ | _ {l_d(\ Mathbb r^d)} $等同于主要的$ \ dbar f $在主要的理想$ \ mathcal {l} _ {d,\ infty},$因此,提供了一个非敏感的,均匀的,基于$ \ dbar f。 $ c^{\ ast} $ - $ \ mathbb {r}^d $上的主要符号映射的代数概念,这是最近两位作者和合作者最近开发的。

We obtain Weyl type asymptotics for the quantised derivative $\dbar f$ of a function $f$ from the homgeneous Sobolev space $\dot{W}^1_d(\mathbb{R}^d)$ on $\mathbb{R}^d.$ The asymptotic coefficient $\|\nabla f\|_{L_d(\mathbb R^d)}$ is equivalent to the norm of $\dbar f$ in the principal ideal $\mathcal{L}_{d,\infty},$ thus, providing a non-asymptotic, uniform bound on the spectrum of $\dbar f.$ Our methods are based on the $C^{\ast}$-algebraic notion of the principal symbol mapping on $\mathbb{R}^d$, as developed recently by the last two authors and collaborators.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源