论文标题

高斯和相关分析核的希尔伯特空间中的近似

Approximation in Hilbert spaces of the Gaussian and related analytic kernels

论文作者

Karvonen, Toni, Suzuki, Yuya

论文摘要

我们考虑基于功能评估的线性近似值,以重现某些分析加权功率系列内核的内核希尔伯特空间和间隔$ [-1,1] $的固定核。这两个类都包含流行的高斯内核$ k(x,y)= \ exp( - \ tfrac {1} {2} {2} \ varepsilon^2(x-y)^2)$。对于加权功率系列内核,我们在最坏情况下的误差上得出了几乎匹配的上和下限。当应用于高斯内核时,我们的结果指出,最多可为子指数因素,最小误差衰减为$(\ varepsilon/n)^n(n!)^{ - 1/2} $。证明基于加权多项式插值和经典多项式系数估计。

We consider linear approximation based on function evaluations in reproducing kernel Hilbert spaces of certain analytic weighted power series kernels and stationary kernels on the interval $[-1,1]$. Both classes contain the popular Gaussian kernel $K(x, y) = \exp(-\tfrac{1}{2}\varepsilon^2(x-y)^2)$. For weighted power series kernels we derive almost matching upper and lower bounds on the worst-case error. When applied to the Gaussian kernel, our results state that, up to a sub-exponential factor, the $n$th minimal error decays as $(\varepsilon/n)^n (n!)^{-1/2}$. The proofs are based on weighted polynomial interpolation and classical polynomial coefficient estimates.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源