论文标题
在Hopf代数$ H_ {b:1}^*$ Kashina的有限维霍夫代数的某些分类中
On some classification of finite-dimensional Hopf algebras over the Hopf algebra $H_{b:1}^*$ of Kashina
论文作者
论文摘要
令$ h $为$ 16 $二维的非平凡的半含量hopf代数$ h_ {b:1} $在kashina \ cite \ cite {k00}的分类工作中。我们完全确定满足$ \ Mathcal {b}(n)\ cong \ bigotimes_ {i \ in I} \ Mathcal {b}(n_i)$的所有有限维nichols代数$ _H^H \ Mathcal {yd} $。在这个假设下,我们通过相关的Nichols代数$ \ Mathcal B(n)$对所有这些HOPF代数分类为有限维增长。
Let $H$ be the dual of $16$-dimensional nontrivial semisimple Hopf algebra $H_{b:1}$ in the classification work of Kashina \cite{K00}. We completely determine all finite-dimensional Nichols algebras satisfying $\mathcal{B}(N)\cong \bigotimes_{i\in I}\mathcal{B}(N_i)$, where $N=\bigoplus_{i\in I}N_i$, each $N_i$ is a simple object in $_H^H\mathcal{YD}$. Under this assumption, we classify all those Hopf algebras of finite-dimensional growth from the semisimple Hopf algebra $H$ via the relevant Nichols algebras $\mathcal B(N)$.