论文标题

四维超曲面的新形式不变

A New Conformal Invariant for four-Dimensional Hypersurfaces

论文作者

Bernard, Yann

论文摘要

设计了一种新的用于四维超曲面的新型不变能量。它可能会研究大量的曲率能量,我们表明它们的临界点是光滑的。作为推论,我们获得了Willmore Energy($ Q $ curvature Energy)的四维类似物的临界点的规律性,但也认为Bach-Flat Hypersurfaces是平稳的,以及相关的估计值。

A new conformally invariant energy for four-dimensional hypersurfaces is devised. It renders possible the study of a large class of curvature energies, and we show that their critical points are smooth. As corollaries, we obtain the regularity of the critical points of the four-dimensional analogues of the Willmore energy, of the $Q$-curvature energy, but also that Bach-flat hypersurfaces are smooth, along with relevant estimates.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源