论文标题
美元
$Z_N$-balls: Solitons from $Z_N$-symmetric scalar field theory
论文作者
论文摘要
我们讨论了一个条件,在哪些条件下,具有恒定阶段的复杂标量字段$ ϕ $的静态,有限的配置,并以$ v(ϕ^*ϕ^*ϕ^*ϕ^n+ϕ^{*n})的潜力具有$ n \ in \ in \ mathbb {n} $ z $ n \ geq2 $ I.E. e。此类配置称为$ z_n $ -balls。我们以$(3+1)$ - 尺寸为基础的$(3+1)$尺寸构建明确的解决方案,该模型基于有限的polakov循环($ n $)Yang-Mills理论。我们发现$ n = $ n = $ n = $ 3、4、6、8、10的$ z_n $ -balls,并表明只有零径向节点的静态解决方案,$ n $奇数,而具有径向节点的解决方案可能存在$ n $偶数。
We discuss the conditions under which static, finite-energy, configurations of a complex scalar field $ϕ$ with constant phase and spherically symmetric norm exist in a potential of the form $V(ϕ^*ϕ, ϕ^N+ϕ^{*N})$ with $N\in\mathbb{N}$ and $N\geq2$, i.e. a potential with a $Z_N$-symmetry. Such configurations are called $Z_N$-balls. We build explicit solutions in $(3+1)$-dimensions from a model mimicking effective field theories based on the Polyakov loop in finite-temperature SU($N$) Yang-Mills theory. We find $Z_N$-balls for $N=$3, 4, 6, 8, 10 and show that only static solutions with zero radial node exist for $N$ odd, while solutions with radial nodes may exist for $N$ even.