论文标题
在Funk的抛物线上
On Funk's parabolas
论文作者
论文摘要
我们在配备放克度量的二维单元磁盘中研究抛物线。由于放克度量的不可逆性,获得了四种类型的抛物线,每种抛物线都在Zermelo导航问题中应用于物理。我们表明,所获得的四个抛物线中的两个是众所周知的圆锥,其余两个的特征是不可还原的四分之一。给出了明确的例子。
We study parabolas in the two dimensional unit disk equipped with a Funk metric. Four types of parabolas are obtained, due to the non-reversibility of the Funk metric, each one with applications to physics in the Zermelo navigation problem. We show that two of the four parabolas obtained are well known conics, and the remaining two are characterized by irreducible quartics. Explicit examples are given.