论文标题
混合和扩散原星盘化学
Mixing and diffusion in protoplanetary disc chemistry
论文作者
论文摘要
我们开发了一种简单的迭代方案,以在Prodimo热化学模型中包括垂直的湍流混合和扩散。仔细检查模型是否会收敛到反应扩散方程的时间无关的解,例如用于系超球大气模型。介绍了一系列五个T托里圆盘模型,其中我们将混合参数α混合从0到0.01,并考虑到(a)(a)冰冷晶粒的辐射转移反馈,这些反馈是混合的,并且(b)(b)在整流器温度反应导致的分子丰度不断变化的反应,由整流整体反应和增加的线热反应和降低。我们看到椎间盘中的分子和冰浓度发生了很大变化。最丰富的物种(H2,CH4,CO,较高层中的中性原子,以及中平面中的ICE)被上下运输,在这些丰富的化学物质最终分解的位置,例如,通过照片过程,反应产物的释放对所有其他分子都有重要的后果。通常,这会产生更活跃的化学性质,并具有更丰富的电离,原子,分子和冰物种以及在未混合情况下与新的化学途径无关的新化学途径。我们讨论了混合引起的三个光谱观察的影响,并发现(i)冰冷可以到达可观察的圆盘表面,在该圆盘表面它们会导致IR到Far-Ir波长处引起冰的吸收和发射特征,(ii)混合增加了某些中性分子的浓度,可通过中性谱图观察到的某些中性分子的浓度,尤其是在OH,尤其是HCN和C2H2和C2H2和C2H2和C2H2和C2H2和C2H2,以及图像中的样子。和通道图,强烈混合会导致CO分子填充遥远的中平面。
We develop a simple iterative scheme to include vertical turbulent mixing and diffusion in ProDiMo thermo-chemical models for protoplanetary discs. The models are carefully checked for convergence toward the time-independent solution of the reaction-diffusion equations, as e.g. used in exoplanet atmosphere models. A series of five T Tauri disc models is presented where we vary the mixing parameter α mix from 0 to 0.01 and take into account (a) the radiative transfer feedback of the opacities of icy grains that are mixed upward and (b) the feedback of the changing molecular abundances on the gas temperature structure caused by exothermic reactions and increased line heating/cooling. We see considerable changes of the molecular and ice concentrations in the disc. The most abundant species (H2, CH4, CO, the neutral atoms in higher layers, and the ices in the midplane) are transported both up and down, and at the locations where these abundant chemicals finally decompose, for example by photo processes, the release of reaction products has important consequences for all other molecules. This generally creates a more active chemistry, with a richer mixture of ionised, atomic, molecular and ice species and new chemical pathways that are not relevant in the unmixed case. We discuss the impact on three spectral observations caused by mixing and find that (i) icy grains can reach the observable disc surface where they cause ice absorption and emission features at IR to far-IR wavelengths, (ii) mixing increases the concentrations of certain neutral molecules observable by mid-IR spectroscopy, in particular OH, HCN and C2H2, and (iii) mixing can change the optical appearance of CO in ALMA line images and channel maps, where strong mixing would cause the CO molecules to populate the distant midplane.