论文标题

有效的长顺序用户数据建模,用于点击率预测

Efficient Long Sequential User Data Modeling for Click-Through Rate Prediction

论文作者

Chen, Qiwei, Xu, Yue, Pei, Changhua, Lv, Shanshan, Zhuang, Tao, Ge, Junfeng

论文摘要

关于点击率(CTR)预测的最新研究通过对更长的用户行为序列进行建模,已达到新水平。除其他外,两阶段的方法是用于工业应用的最先进解决方案(SOTA)。两阶段方法首先训练检索模型以事先截断长行为序列,然后使用截短序列训练CTR模型。但是,检索模型和CTR模型是分别训练的。因此,CTR模型中检索的子序列不准确,这会降低最终性能。在本文中,我们提出了一个端到端范式来对长行为序列进行建模,该行为序列能够达到卓越的性能以及与现有模型相比的出色成本效益。我们的贡献是三倍:首先,我们提出一个名为ETA-NET的基于哈希的有效目标注意力(TA)网络,以基于低成本的位置操作启用端到端的用户行为检索。提出的ETA-NET可以通过顺序数据建模的数量级来降低标准TA的复杂性。其次,我们建议将通用系统体系结构作为一种在工业系统上部署ETA-NET的可行解决方案。特别是,与SOTA的两阶段方法相比,ETA-NET已部署在TAOBAO的推荐系统上,并在CTR上带来了1.8%的提升,总商品价值(GMV)的提升为3.1%。第三,我们在离线数据集和在线A/B测试上进行了广泛的实验。结果证明,在CTR预测性能和在线成本效益方面,所提出的模型大大优于现有的CTR模型。 ETA-NET现在为淘宝精的主要流量提供服务,每天为数亿用户提供服务。

Recent studies on Click-Through Rate (CTR) prediction has reached new levels by modeling longer user behavior sequences. Among others, the two-stage methods stand out as the state-of-the-art (SOTA) solution for industrial applications. The two-stage methods first train a retrieval model to truncate the long behavior sequence beforehand and then use the truncated sequences to train a CTR model. However, the retrieval model and the CTR model are trained separately. So the retrieved subsequences in the CTR model is inaccurate, which degrades the final performance. In this paper, we propose an end-to-end paradigm to model long behavior sequences, which is able to achieve superior performance along with remarkable cost-efficiency compared to existing models. Our contribution is three-fold: First, we propose a hashing-based efficient target attention (TA) network named ETA-Net to enable end-to-end user behavior retrieval based on low-cost bit-wise operations. The proposed ETA-Net can reduce the complexity of standard TA by orders of magnitude for sequential data modeling. Second, we propose a general system architecture as one viable solution to deploy ETA-Net on industrial systems. Particularly, ETA-Net has been deployed on the recommender system of Taobao, and brought 1.8% lift on CTR and 3.1% lift on Gross Merchandise Value (GMV) compared to the SOTA two-stage methods. Third, we conduct extensive experiments on both offline datasets and online A/B test. The results verify that the proposed model outperforms existing CTR models considerably, in terms of both CTR prediction performance and online cost-efficiency. ETA-Net now serves the main traffic of Taobao, delivering services to hundreds of millions of users towards billions of items every day.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源