论文标题

哈密​​顿的镶木岩理论观点

Hamiltonian perspective on parquet theory

论文作者

Green, Frederick, Ainsworth, Thomas L.

论文摘要

理解集体现象需要对强烈相互作用成分组装中相关性的可行描述。捕捉他们自信的本质至关重要。镶木素理论承认严格成对多体相关的最大自谐度。虽然基于扰动,但Parquet和Allied模型的核心是一组全阶散射的强耦合非线性积分方程。通过交叉对称性受到严格约束,它们仍然是启发式的。在由于Kraichnan引起的形式主义中,我们对Fermionic Parquet结构进行了哈密顿分析。其本构方程的形状自然遵循由此产生的规范描述。我们讨论了派生的保存散射振幅与标准镶木的亲和力。尽管汉密尔顿衍生的模型幅度在显微镜上保存,但不能保留交叉对称性。镶木振幅及其改进保留了交叉对称性,但在任何阶段都无法保护保护。应使用哪些振幅取决于物理,而不是理论上理想的完整性。

Understanding collective phenomena calls for tractable descriptions of correlations in assemblies of strongly interacting constituents. Capturing the essence of their self-consistency is central. The parquet theory admits a maximum level of self-consistency for strictly pairwise many-body correlations. While perturbatively based, the core of parquet and allied models is a set of strongly coupled nonlinear integral equations for all-order scattering; tightly constrained by crossing symmetry, they are nevertheless heuristic. Within a formalism due to Kraichnan, we present a Hamiltonian analysis of fermionic parquet's structure. The shape of its constitutive equations follows naturally from the resulting canonical description. We discuss the affinity between the derived conserving scattering amplitude and that of standard parquet. Whereas the Hamiltonian-derived model amplitude is microscopically conserving, it cannot preserve crossing symmetry. The parquet amplitude and its refinements preserve crossing symmetry, yet cannot safeguard conservation at any stage. Which amplitude should be used depends on physics rather than on theoretically ideal completeness.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源