论文标题
有效地使用伪树立证据证明平等推理
Certifying Parity Reasoning Efficiently Using Pseudo-Boolean Proofs
论文作者
论文摘要
在过去的几十年中,组合优化算法的巨大改进对人工智能,运营研究及其他地区产生了重大影响,但是当前最新求解器的输出通常很难验证,有时是错误的。为了布尔值满意度(SAT)求解器的证明记录是作为证明正确性的一种方式,但是使用的方法似乎很难推广到更强的范式。更重要的是,即使对于增强的SAT技术,例如奇偶校验(XOR)推理,基数检测和对称处理,它仍然无法触及标准DRAT格式的实际有效的证明。在这项工作中,我们展示了如何相反使用具有扩展变量的伪树状不平等现象来证明XOR推理是合理的。与现有的DRAT方法相比,我们对SAT求解器集成的实验评估表明,证明日志记录和验证时间急剧下降。由于我们的方法是对DRAT的严格概括,并且很容易使自己也表达了0-1的编程甚至约束编程问题,因此我们希望这项工作为统一的方法指向有效的机器验证的方法,以提供丰富的组合优化范式的有效验证的证据。
The dramatic improvements in combinatorial optimization algorithms over the last decades have had a major impact in artificial intelligence, operations research, and beyond, but the output of current state-of-the-art solvers is often hard to verify and is sometimes wrong. For Boolean satisfiability (SAT) solvers proof logging has been introduced as a way to certify correctness, but the methods used seem hard to generalize to stronger paradigms. What is more, even for enhanced SAT techniques such as parity (XOR) reasoning, cardinality detection, and symmetry handling, it has remained beyond reach to design practically efficient proofs in the standard DRAT format. In this work, we show how to instead use pseudo-Boolean inequalities with extension variables to concisely justify XOR reasoning. Our experimental evaluation of a SAT solver integration shows a dramatic decrease in proof logging and verification time compared to existing DRAT methods. Since our method is a strict generalization of DRAT, and readily lends itself to expressing also 0-1 programming and even constraint programming problems, we hope this work points the way towards a unified approach for efficient machine-verifiable proofs for a rich class of combinatorial optimization paradigms.