论文标题

下一个新POI推荐的联合三胞胎损失学习

Joint Triplet Loss Learning for Next New POI Recommendation

论文作者

Lim, Nicholas, Hooi, Bryan, Ng, See-Kiong, Goh, Yong Liang

论文摘要

用户POI矩阵的稀疏性是下一个POI推荐的一个确定的问题,它阻碍了对用户偏好的有效学习。为了关注该问题的更详细的扩展,我们为下一个新的($ n^2 $)POI推荐任务提出了联合三胞胎损失学习(JTLL)模块,这更具挑战性。我们的JTLL模块首先从用户的历史POI访问序列中计算出其他培训样本,然后,提出了设计的三重态损耗功能,以根据其各自的关系减少POI和用户嵌入的距离。接下来,JTLL模块将与最近的方法共同培训,以学习推荐任务的未访问关系。在两个已知的实际LBSN数据集上进行的实验表明,我们的联合培训模块能够改善最近现有作品的性能。

Sparsity of the User-POI matrix is a well established problem for next POI recommendation, which hinders effective learning of user preferences. Focusing on a more granular extension of the problem, we propose a Joint Triplet Loss Learning (JTLL) module for the Next New ($N^2$) POI recommendation task, which is more challenging. Our JTLL module first computes additional training samples from the users' historical POI visit sequence, then, a designed triplet loss function is proposed to decrease and increase distances of POI and user embeddings based on their respective relations. Next, the JTLL module is jointly trained with recent approaches to additionally learn unvisited relations for the recommendation task. Experiments conducted on two known real-world LBSN datasets show that our joint training module was able to improve the performances of recent existing works.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源