论文标题

用于固有图像分解的判别特征编码

Discriminative feature encoding for intrinsic image decomposition

论文作者

Wang, Zongji, Liu, Yunfei, Lu, Feng

论文摘要

固有的图像分解是一个重要且长期存在的计算机视觉问题。给定输入图像,恢复物理场景属性是不适合的。几个以身体动机的先验已被用来限制固有图像分解的优化问题的解决方案空间。这项工作利用了深度学习的优势,并表明它可以以高效率解决这个具有挑战性的计算机视觉问题。焦点在于特征编码阶段,从输入图像中提取不同固有层的区分特征。为了实现这一目标,我们探讨了高维特征嵌入空间中不同内在组件的独特特征。我们定义特征分布差异,以有效地将不同内在组件的特征向量分开。功能分布也受到限制,以通过特征分布一致性符合真实的分布。此外,还提供了一种数据改进方法来消除Sintel数据集中的数据不一致,从而更适合于固有的图像分解。我们的方法还扩展到基于相邻帧之间像素的对应关系的固有视频分解。实验结果表明,我们提出的网络结构可以胜过现有的最新最新。

Intrinsic image decomposition is an important and long-standing computer vision problem. Given an input image, recovering the physical scene properties is ill-posed. Several physically motivated priors have been used to restrict the solution space of the optimization problem for intrinsic image decomposition. This work takes advantage of deep learning, and shows that it can solve this challenging computer vision problem with high efficiency. The focus lies in the feature encoding phase to extract discriminative features for different intrinsic layers from an input image. To achieve this goal, we explore the distinctive characteristics of different intrinsic components in the high dimensional feature embedding space. We define feature distribution divergence to efficiently separate the feature vectors of different intrinsic components. The feature distributions are also constrained to fit the real ones through a feature distribution consistency. In addition, a data refinement approach is provided to remove data inconsistency from the Sintel dataset, making it more suitable for intrinsic image decomposition. Our method is also extended to intrinsic video decomposition based on pixel-wise correspondences between adjacent frames. Experimental results indicate that our proposed network structure can outperform the existing state-of-the-art.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源