论文标题
深度学习基于技术的外骨骼机器人控制器开发
Deep Learning Technology-Based Exoskeleton Robot Controller Development
论文作者
论文摘要
由于其系统性化和控制机器人的非线性动力学的系统方法,因此基于模型的控制是机器人应用程序的首选。实施机器人应用程序应用程序的基于模型的控制器所涉及的基本挑战是与机器人动力学的实时计算相关的时间延迟。由于机器人动态运动方程的顺序结构,多核心CPU无法减少控制算法的执行时间。需要高速处理器以保持更高的采样率。基于神经网络的建模为开发适合并行处理的顺序模型的平行结构等效模型提供了出色的解决方案。在本文中,开发了一个基于深层神经网络的平行结构7度的自由度,人类下肢外骨骼机器人控制器。 49个密集连接的神经元分为四层,以估计跟踪轨迹的关节扭矩要求。为了培训,提出了深层神经网络,即基于分析模型的数据生成技术。训练有素的深神经网络用于实时关节扭矩预测,并合并了PD控制器以减轻预测错误。仿真结果显示高轨迹跟踪性能。已证明了开发的控制器的稳定性分析。通过方差分析(ANOVA),分析了控制器对参数变化的鲁棒性。在保持相同的机器人动力学的同时,介绍了开发控制器与计算的扭矩控制器,模型参考计算扭矩控制器,滑动模式控制器,自适应控制器和线性二次调节器之间的比较研究。
Model-based control is preferred for robotics applications due to its systematic approach to linearize and control the robot's nonlinear dynamics. The fundamental challenge involved in implementing a model-based controller for robotics applications is the time delay associated with the real-time computation of the robot dynamics. Due to the sequential structure of the robot's dynamic equation of motion, the multicore CPU cannot reduce the control algorithm execution time. A high-speed processor is required to maintain a higher sampling rate. Neural network-based modeling offers an excellent solution for developing a parallel structured equivalent model of the sequential model that is suitable for parallel processing. In this paper, a Deep neural network-based parallel structured 7 degrees of freedom human lower extremity exoskeleton robot controller is developed. Forty-nine densely connected neurons are arranged in four layers to estimate joint torque requirements for tracking trajectories. For training, the deep neural network, an analytical model-based data generation technique is presented. A trained deep neural network is used for real-time joint torque prediction and a PD controller is incorporated to mitigate the prediction errors. Simulation results show high trajectory tracking performances. The developed controller's stability analysis is proved. The robustness of the controller against the parameter variation is analyzed with the help of the analysis of variance (ANOVA). A comparative study between the developed controller and the Computed Torque Controller, Model Reference Computed Torque Controller, Sliding Mode Controller, Adaptive controller, and Linear Quadratic Regulator are presented while keeping the same robot dynamics.