论文标题

使用流动性数据来识别潜在的活动行为和生活方式来描述城市动态

Identifying latent activity behaviors and lifestyles using mobility data to describe urban dynamics

论文作者

Yang, Yanni, Pentland, Alex, Moro, Esteban

论文摘要

城市化及其问题需要对城市动态,尤其是现代城市复杂而多样化的生活方式的深入和全面的了解。以数字方式获得的数据可以准确捕获复杂的人类活动,但缺乏人口统计数据的解释性。在本文中,我们研究了美国在美国11个都会区的120万人到110万个地方的出行探视模式的隐私数据集,以检测美国最大的美国城市中的潜在行动行为和生活方式。尽管出行访问的复杂性很大,但我们发现生活方式可以自动分解为12种对人们如何结合购物,饮食,工作或利用空闲时间的可解释活动行为。我们没有描述具有单一生活方式的人,而是发现城市居民的行为是这些行为的混合。那些被检测到的潜在活动行为同样存在于城市之间,无法通过主要人口特征来完全解释。最后,我们发现这些潜在行为与城市中经验丰富的收入隔离,运输或健康行为等动态有关,即使在控制了人口统计学特征之后。我们的结果表明,与活动行为相辅相成,以了解城市动态的重要性。

Urbanization and its problems require an in-depth and comprehensive understanding of urban dynamics, especially the complex and diversified lifestyles in modern cities. Digitally acquired data can accurately capture complex human activity, but it lacks the interpretability of demographic data. In this paper, we study a privacy-enhanced dataset of the mobility visitation patterns of 1.2 million people to 1.1 million places in 11 metro areas in the U.S. to detect the latent mobility behaviors and lifestyles in the largest American cities. Despite the considerable complexity of mobility visitations, we found that lifestyles can be automatically decomposed into only 12 latent interpretable activity behaviors on how people combine shopping, eating, working, or using their free time. Rather than describing individuals with a single lifestyle, we find that city dwellers' behavior is a mixture of those behaviors. Those detected latent activity behaviors are equally present across cities and cannot be fully explained by main demographic features. Finally, we find those latent behaviors are associated with dynamics like experienced income segregation, transportation, or healthy behaviors in cities, even after controlling for demographic features. Our results signal the importance of complementing traditional census data with activity behaviors to understand urban dynamics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源