论文标题

死亡还是被谋杀?预测女性新闻报道中的责任感

Dead or Murdered? Predicting Responsibility Perception in Femicide News Reports

论文作者

Minnema, Gosse, Gemelli, Sara, Zanchi, Chiara, Caselli, Tommaso, Nissim, Malvina

论文摘要

不同的语言表达方式可以从不同的观点概念化同一事件,从而强调某些参与者而不是其他参与者。在这里,我们调查了一种具有社会后果的案例:基于性别的暴力(GBV)的语言表达如何影响我们对谁负责?我们基于以前在该领域的心理语言研究,并对从意大利报纸语料库自动提取的GBV描述进行了大规模的感知调查。然后,我们训练回归模型,以预测GBV参与者在感知责任的不同方面的显着性。我们的最佳模型(微调BERT)显示出稳定的整体性能,并且在维度和参与者之间存在较大差异:显着_FOCUS_比显着性_Blame_更可预测,并且肇事者的显着性比受害者的显着性更为可预测。使用不同表示的脊回归模型进行的实验表明,基于语言理论的特征与基于单词的特征类似。总体而言,我们表明,不同的语言选择确实触发了对责任感的不同看法,并且可以自动建立这种看法。这项工作可能是提高公众和新闻制作人不同观点后果的认识的核心工具。

Different linguistic expressions can conceptualize the same event from different viewpoints by emphasizing certain participants over others. Here, we investigate a case where this has social consequences: how do linguistic expressions of gender-based violence (GBV) influence who we perceive as responsible? We build on previous psycholinguistic research in this area and conduct a large-scale perception survey of GBV descriptions automatically extracted from a corpus of Italian newspapers. We then train regression models that predict the salience of GBV participants with respect to different dimensions of perceived responsibility. Our best model (fine-tuned BERT) shows solid overall performance, with large differences between dimensions and participants: salient _focus_ is more predictable than salient _blame_, and perpetrators' salience is more predictable than victims' salience. Experiments with ridge regression models using different representations show that features based on linguistic theory similarly to word-based features. Overall, we show that different linguistic choices do trigger different perceptions of responsibility, and that such perceptions can be modelled automatically. This work can be a core instrument to raise awareness of the consequences of different perspectivizations in the general public and in news producers alike.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源