论文标题
对话摘要的序列长度的重点研究
A Focused Study on Sequence Length for Dialogue Summarization
论文作者
论文摘要
输出长度对于对话摘要系统至关重要。对话摘要长度由多个因素决定,包括对话复杂性,摘要目标和个人喜好。在这项工作中,我们从三个角度来对话摘要。首先,我们分析了现有模型的输出与相应的人类参考之间的长度差异,并发现摘要模型由于其预读的目标而倾向于产生更多的详细摘要。其次,我们通过比较不同的模型设置来确定摘要长度预测的显着特征。第三,我们尝试使用长度意识的摘要,并在现有模型上显示出明显的改进,如果汇总长度可以很好地整合。分析和实验是在流行的对话和Samsum数据集中进行的,以验证我们的发现。
Output length is critical to dialogue summarization systems. The dialogue summary length is determined by multiple factors, including dialogue complexity, summary objective, and personal preferences. In this work, we approach dialogue summary length from three perspectives. First, we analyze the length differences between existing models' outputs and the corresponding human references and find that summarization models tend to produce more verbose summaries due to their pretraining objectives. Second, we identify salient features for summary length prediction by comparing different model settings. Third, we experiment with a length-aware summarizer and show notable improvement on existing models if summary length can be well incorporated. Analysis and experiments are conducted on popular DialogSum and SAMSum datasets to validate our findings.