论文标题
在TAMM-DANCOFF近似中,使用依赖时间依赖性的密度功能理论的对称准准经典模型
The symmetric quasi-classical model using on-the-fly time-dependent density functional theory within the Tamm-Dancoff approximation
论文作者
论文摘要
在模拟非绝热缩短的分子动力学时,主要的计算挑战是具有分子大小的电子结构计算的不利计算成本。简单的电子结构理论,例如TAMM-DANCOFF近似(TDDFT/TDA)内的时间依赖性密度功能理论,减轻了在逼真的时间尺度上模拟的适度分子系统的成本。尽管TDDFT/TDA的准确性确实存在一些局限性,但具有吸引力的特征是,除了通过使用密度功能包括电子相关性外,计算分析核梯度和非绝热耦合向量的成本在计算上通常在计算上是可行的,即使对于中等尺寸的基础集合也是可行的。在这项工作中,讨论和分析了TDDFT/TDA的一些好处和局限性,以作为对称准式古典型Meyer-Miller模型(SQC/MM)的“后端”电子结构方法的适用性。为了研究TDDFT/TDA的益处和局限性,SQC/MM被用来预测和分析气相丙二醛中激发氢转移的典型示例。然后,模拟了硒的开环动力学,这突出了TDDFT/TDA的某些缺陷。此外,提出了一些新的算法,该算法加快了一组激发电子状态的分析核梯度和非绝热耦合向量的计算。
The primary computational challenge when simulating nonadiabatic ab initio molecular dynamics is the unfavorable compute costs of electronic structure calculations with molecular size. Simple electronic structure theories, like time-dependent density functional theory within the Tamm-Dancoff approximation (TDDFT/TDA), alleviate this cost for moderately sized molecular systems simulated on realistic time scales. Although TDDFT/TDA does have some limitations in accuracy, an appealing feature is that, in addition to including electron correlation through the use of a density functional, the cost of calculating analytic nuclear gradients and nonadiabatic coupling vectors is often computationally feasible even for moderately-sized basis sets. In this work, some of the benefits and limitations of TDDFT/TDA are discussed and analyzed with regard to its applicability as a "back-end" electronic structure method for the symmetric quasi-classical Meyer-Miller model (SQC/MM). In order to investigate the benefits and limitations of TDDFT/TDA, SQC/MM is employed to predict and analyze a prototypical example of excited-state hydrogen transfer in gas-phase malonaldehyde. Then, the ring-opening dynamics of selenophene are simulated which highlight some of the deficiencies of TDDFT/TDA. Additionally, some new algorithms are proposed that speed up the calculation of analytic nuclear gradients and nonadiabatic coupling vectors for a set of excited electronic states.