论文标题
重新思考丢失的数据:态度不确定性 - 建议建议
Rethinking Missing Data: Aleatoric Uncertainty-Aware Recommendation
论文作者
论文摘要
历史互动是推荐模型培训的默认选择,通常表现出高稀疏性,即大多数用户项目对都是未观察到的数据。标准选择是将丢失的数据视为负训练样本,并估计用户项目对之间的相互作用以及观察到的相互作用。这样,在训练过程中不可避免地会误标记一些潜在的相互作用,这将损害模型的保真度,阻碍模型回忆起错误标签的项目,尤其是长尾tail的项目。在这项工作中,我们从新的不确定性的新角度研究了标签的问题,该问题描述了缺失数据的固有随机性。随机性促使我们超越了相互作用的可能性,并接受了不确定性建模。为此,我们提出了一个新的不确定性不确定性建议(AUR)框架,该框架由新的不确定性估计器以及正常的推荐模型组成。根据质地不确定性理论,我们得出了一个新的建议目标来学习估计器。由于错误标签的机会反映了一对的潜力,因此AUR根据不确定性提出了建议,该建议被证明是为了提高不流行项目的建议性能而不会牺牲整体性能。我们对三种代表性推荐模型进行实例化:矩阵分解(MF),LightGCN和VAE来自主流模型体系结构。两个现实世界数据集的广泛结果验证了AUR W.R.T.的有效性。更好的建议结果,尤其是在长尾项目上。
Historical interactions are the default choice for recommender model training, which typically exhibit high sparsity, i.e., most user-item pairs are unobserved missing data. A standard choice is treating the missing data as negative training samples and estimating interaction likelihood between user-item pairs along with the observed interactions. In this way, some potential interactions are inevitably mislabeled during training, which will hurt the model fidelity, hindering the model to recall the mislabeled items, especially the long-tail ones. In this work, we investigate the mislabeling issue from a new perspective of aleatoric uncertainty, which describes the inherent randomness of missing data. The randomness pushes us to go beyond merely the interaction likelihood and embrace aleatoric uncertainty modeling. Towards this end, we propose a new Aleatoric Uncertainty-aware Recommendation (AUR) framework that consists of a new uncertainty estimator along with a normal recommender model. According to the theory of aleatoric uncertainty, we derive a new recommendation objective to learn the estimator. As the chance of mislabeling reflects the potential of a pair, AUR makes recommendations according to the uncertainty, which is demonstrated to improve the recommendation performance of less popular items without sacrificing the overall performance. We instantiate AUR on three representative recommender models: Matrix Factorization (MF), LightGCN, and VAE from mainstream model architectures. Extensive results on two real-world datasets validate the effectiveness of AUR w.r.t. better recommendation results, especially on long-tail items.