论文标题

高阶矩阵方法具有定界扩展域

High-order matrix method with delimited expansion domain

论文作者

Lin, Kai, Qian, Wei-Liang

论文摘要

由基本和高度过度的准模式的实质性不稳定的动力,关于黑洞伪摄影的概念的最新发展呼吁以前所未有的精度取得数值结果。这项工作将黑洞准模式的矩阵方法推广并改善了更高订单的矩阵方法,特别是针对与绝对模式结构不稳定性密切相关的不连续性的一类扰动。该方法基于模拟chebyshev网格,该网格保证了其在插值程度上的收敛性。实际上,解决黑洞准模式是一项艰巨的任务。不连续性的存在构成了进一步的困难,因此不能直接采用许多知名的方法。与其他可行的方法相比,修改的矩阵方法具有速度和准确性。因此,该方法是相关研究的有用小工具。

Motivated by the substantial instability of the fundamental and high-overtone quasinormal modes, recent developments regarding the notion of black hole pseudospectrum call for numerical results with unprecedented precision. This work generalizes and improves the matrix method for black hole quasinormal modes to higher orders, specifically aiming at a class of perturbations to the metric featured by discontinuity intimately associated with the quasinormal mode structural instability. The approach is based on the mock-Chebyshev grid, which guarantees its convergence in the degree of the interpolant. In practice, solving for black hole quasinormal modes is a formidable task. The presence of discontinuity poses a further difficulty so that many well-known approaches cannot be employed straightforwardly. Compared with other viable methods, the modified matrix method is competent in speed and accuracy. Therefore, the method serves as a helpful gadget for relevant studies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源