论文标题

迈向完整的和高级姿势的步态识别

Towards Complete-View and High-Level Pose-based Gait Recognition

论文作者

Pan, Honghu, Chen, Yongyong, Xu, Tingyang, He, Yunqi, He, Zhenyu

论文摘要

基于模型的步态识别方法通常采用行人步行姿势来识别人类。 但是,由于摄像机的视图改变,现有方法并未明确解决人类姿势的较大阶层差异。 在本文中,我们建议通过通过低Upper生成的对抗网络(Lugan)学习全级转换矩阵来为每个单视姿势样本生成多视图姿势序列。 通过摄像机成像的先验,我们得出的是,横求之间的空间坐标满足了全级矩阵的线性转换,因此,本文采用了对抗性训练来从源姿势学习转换矩阵,并从目标视图中学习转换矩阵,以获得目标姿势序列。 为此,我们实施了由图形卷积(GCN)层组成的发电机,完全连接(FC)层和两个分支卷积(CNN)层:GCN层和FC层编码源姿势序列和目标视图,然后CNN分支,然后学习一个较低的三角形矩阵和上层三角形的构造,最终是他们的上图,最终是分别的。 矩阵。 出于对抗训练的目的,我们进一步设计了一个条件歧视者,该条件区分姿势序列是真实的还是产生的。 为了启用高级相关性学习,我们提出了一个名为多尺度超图卷积(HGC)的插件播放模块,以替换基线中的空间图卷积层,该层可以同时对联合级别,零件级别和身体级别的相关性进行建模。 在两个大型步态识别数据集(即Casia-B和OUMVLP置位)上进行了广泛的实验,表明我们的方法的表现优于基线模型,并以一个较大的边距基于姿势的方法。

The model-based gait recognition methods usually adopt the pedestrian walking postures to identify human beings. However, existing methods did not explicitly resolve the large intra-class variance of human pose due to camera views changing. In this paper, we propose to generate multi-view pose sequences for each single-view pose sample by learning full-rank transformation matrices via lower-upper generative adversarial network (LUGAN). By the prior of camera imaging, we derive that the spatial coordinates between cross-view poses satisfy a linear transformation of a full-rank matrix, thereby, this paper employs the adversarial training to learn transformation matrices from the source pose and target views to obtain the target pose sequences. To this end, we implement a generator composed of graph convolutional (GCN) layers, fully connected (FC) layers and two-branch convolutional (CNN) layers: GCN layers and FC layers encode the source pose sequence and target view, then CNN branches learn a lower triangular matrix and an upper triangular matrix, respectively, finally they are multiplied to formulate the full-rank transformation matrix. For the purpose of adversarial training, we further devise a condition discriminator that distinguishes whether the pose sequence is true or generated. To enable the high-level correlation learning, we propose a plug-and-play module, named multi-scale hypergraph convolution (HGC), to replace the spatial graph convolutional layer in baseline, which could simultaneously model the joint-level, part-level and body-level correlations. Extensive experiments on two large gait recognition datasets, i.e., CASIA-B and OUMVLP-Pose, demonstrate that our method outperforms the baseline model and existing pose-based methods by a large margin.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源