论文标题

在$ g(a)上_ \ mathbb {q}有限表示的戒指

On $G(A)_\mathbb{Q}$ of rings of finite representation type

论文作者

Puthenpurakal, Tony J.

论文摘要

令$(a,\ mathfrak {m})$为有限代表类型的本地戒指。 如果$ a $的Ar-quiver是知道的,那么根据Auslander和Reiten的结果,可以阐明$ g(a)$ Grothendieck Grothendieck Grotity of Ficalbility生成的$ A $ Modules。如果不知道ar-quiver,则在本文中,我们给出$ g(a)_ \ mathbb {q} = g(a)\ otimes_ \ mathbb {z} \ mathbb {q} $时,当$ k = a/\ mathfrak {m} $非常完美。作为一个应用程序,我们证明,如果$ a $是一种出色的等电性henselian gornstein gornstein local Ring,则具有$ \ text {char} \ a/\ mathfrak {m} \ neq 2,3,5 $(和$ a/\ a/\ mathfrak {m} $ peftss),然后\ mathbb {q} $。

Let $(A,\mathfrak{m})$ be an excellent Henselian Cohen-Macaulay local ring of finite representation type. If the AR-quiver of $A$ is known then by a result of Auslander and Reiten one can explicity compute $G(A)$ the Grothendieck group of finitely generated $A$-modules. If the AR-quiver is not known then in this paper we give estimates of $G(A)_\mathbb{Q} = G(A)\otimes_\mathbb{Z} \mathbb{Q}$ when $k = A/\mathfrak{m}$ is perfect. As an application we prove that if $A$ is an excellent equi-characteristic Henselian Gornstein local ring of positive even dimension with $\text{char} \ A/\mathfrak{m} \neq 2,3,5$ (and $A/\mathfrak{m}$ perfect) then $G(A)_\mathbb{Q} \cong \mathbb{Q}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源