论文标题

矢量量化语义通信系统

Vector Quantized Semantic Communication System

论文作者

Fu, Qifan, Xie, Huiqiang, Qin, Zhijin, Slabaugh, Gregory, Tao, Xiaoming

论文摘要

尽管模拟语义通信系统在文献中受到了很大的关注,但在数字语义通信系统上的工作较少。在本文中,我们开发了一个深度学习(DL)启用的矢量量化(VQ)用于图像传输的语义通信系统,名为VQ-Deepsc。具体而言,我们提出了一个基于卷积的神经网络(CNN)的收发器来提取图像的多尺度语义特征,并介绍多尺度的语义嵌入空间以执行语义特征量化,从而使数据与数字通信系统兼容。此外,我们通过引入Patchgan歧视者来采用对抗性训练来提高接收图像的质量。实验结果表明,在数字通信系统中,提出的VQ-Deepsc比BPG更鲁棒,并且具有与DEEPJSCC方法相当的MS-SSIM性能。

Although analog semantic communication systems have received considerable attention in the literature, there is less work on digital semantic communication systems. In this paper, we develop a deep learning (DL)-enabled vector quantized (VQ) semantic communication system for image transmission, named VQ-DeepSC. Specifically, we propose a convolutional neural network (CNN)-based transceiver to extract multi-scale semantic features of images and introduce multi-scale semantic embedding spaces to perform semantic feature quantization, rendering the data compatible with digital communication systems. Furthermore, we employ adversarial training to improve the quality of received images by introducing a PatchGAN discriminator. Experimental results demonstrate that the proposed VQ-DeepSC is more robustness than BPG in digital communication systems and has comparable MS-SSIM performance to the DeepJSCC method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源