论文标题

使用光发射轨道断层扫描的理论电子结构方法进行基准测试

Benchmarking theoretical electronic structure methods with photoemission orbital tomography

论文作者

Haags, Anja, Yang, Xiaosheng, Egger, Larissa, Brandstetter, Dominik, Kirschner, Hans, Gottwald, Alexander, Richter, Mathias, Koller, Georg, Ramsey, Michael G., Bocquet, François C., Soubatch, Serguei, Tautz, F. Stefan, Puschnig, Peter

论文摘要

在过去的十年中,光发射轨道层析成像(POT)已演变为一种强大的工具,用于研究吸附在(金属)表面上的有机分子的电子结构。通过测量光电子的角度分布是结合能的函数,并利用分子轨道的动量空间特征,盆中导致有机/金属界面处状态的电子密度的轨道分辨图片。在这项合并的实验和理论工作中,我们将锅应用于原型的有机$π$ - 偶联的分子双烷烯(c $ _ {28} $ h $ _ {14} $),在Cu(110)表面上形成了高度定向的单层。在实验上,我们确定了前所未有的13 $π$和12 $σ$轨道的数量,并测量双烷/Cu(110)接口处的其各自的结合能和光谱线形。从理论上讲,我们对该界面进行密度功能计算,该界面采用了四个广泛使用的交换相关功能,来自广义梯度近似以及全局和范围分离的混合功能。通过根据状态的轨道项目密度分析电子结构,我们得出了理论与实验的详细轨道轨道评估。这使我们能够根据有机/金属界面的轨道能量对齐的能力来基于研究功能的性能。

In the past decade, photoemission orbital tomography (POT) has evolved into a powerful tool to investigate the electronic structure of organic molecules adsorbed on (metallic) surfaces. By measuring the angular distribution of photoelectrons as a function of binding energy and making use of the momentum-space signature of molecular orbitals, POT leads to an orbital-resolved picture of the electronic density of states at the organic/metal interface. In this combined experimental and theoretical work, we apply POT to the prototypical organic $π$-conjugated molecule bisanthene (C$_{28}$H$_{14}$) which forms a highly oriented monolayer on a Cu(110) surface. Experimentally, we identify an unprecedented number of 13 $π$ and 12 $σ$ orbitals of bisanthene and measure their respective binding energies and spectral lineshapes at the bisanthene/Cu(110) interface. Theoretically, we perform density functional calculations for this interface employing four widely used exchange-correlation functionals from the families of the generalized gradient approximations as well as global and range-separated hybrid functionals. By analyzing the electronic structure in terms of orbital-projected density of states, we arrive at a detailed orbital-by-orbital assessment of theory vs. experiment. This allows us to benchmark the performance of the investigated functionals with regards to their capability of accounting for the orbital energy alignment at organic/metal interfaces.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源