论文标题

在riemannian歧管上热核的熵的少量时间渐近。

Small time asymptotics of the entropy of the heat kernel on a Riemannian manifold

论文作者

Menkovski, Vlado, Portegies, Jacobus W., Ravelonanosy, Mahefa Ratsisetraina

论文摘要

我们给出了紧凑的Riemannian歧管$ z $的热核$ q_z(t,z,w)之间的相对熵的渐近扩展,而对于固定元素$ z \ in z $中的固定元素$ z \,均值的riemannian量为formanized riemannian量。我们证明,扩展中的系数可以表示为曲率张量的组件中的通用多项式及其在$ z $的协方差衍生物,当它们用正常坐标表示时。我们描述了一种计算系数的方法,并使用该方法计算前三个系数。对于一种无监督的机器学习算法,渐近扩展是必需的,称为扩散变化自动编码器。

We give an asymptotic expansion of the relative entropy between the heat kernel $q_Z(t,z,w)$ of a compact Riemannian manifold $Z$ and the normalized Riemannian volume for small values of $t$ and for a fixed element $z\in Z$. We prove that coefficients in the expansion can be expressed as universal polynomials in the components of the curvature tensor and its covariant derivatives at $z$, when they are expressed in terms of normal coordinates. We describe a method to compute the coefficients, and we use the method to compute the first three coefficients. The asymptotic expansion is necessary for an unsupervised machine-learning algorithm called the Diffusion Variational Autoencoder.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源