论文标题

在建议中建模和利用先决条件

Modeling and Leveraging Prerequisite Context in Recommendation

论文作者

Hu, Hengchang, Pan, Liangming, Ran, Yiding, Kan, Min-Yen

论文摘要

先决条件可以在用户的​​决策中发挥关键作用,但建议系统尚未完全利用这种背景知识。传统推荐系统(RS)主要丰富了用户 - 项目交互,其中上下文由静态用户配置文件和项目描述组成,而忽略了它们的上下文逻辑和约束。例如,RS可能会在用户与另一个项目进行交互的条件下推荐一个项目。从概念侧信息中对先决条件进行建模可以克服这一弱点。我们提出了先决驱动的建议(PDR),这是一种通用的上下文感知框架,在其中明确建模先决条件以促进建议。我们首先设计了先决条件链接(PKL)算法,以策划促进PDR研究的数据集。使用它,我们构建了一个75K+高质量的先决条件概念数据集,该数据集跨越了三个域。然后,我们贡献PDR,PDR的神经实例化。通过通过多层感知器共同优化先决条件的学习和推荐任务,我们发现PDR在所有三个域中始终超过了基线模型,平均利润率为7.41%。重要的是,PDR在冷启动方案中的表现尤其出色,提高了17.65%。

Prerequisites can play a crucial role in users' decision-making yet recommendation systems have not fully utilized such contextual background knowledge. Traditional recommendation systems (RS) mostly enrich user-item interactions where the context consists of static user profiles and item descriptions, ignoring the contextual logic and constraints that underlie them. For example, an RS may recommend an item on the condition that the user has interacted with another item as its prerequisite. Modeling prerequisite context from conceptual side information can overcome this weakness. We propose Prerequisite Driven Recommendation (PDR), a generic context-aware framework where prerequisite context is explicitly modeled to facilitate recommendation. We first design a Prerequisite Knowledge Linking (PKL) algorithm, to curate datasets facilitating PDR research. Employing it, we build a 75k+ high-quality prerequisite concept dataset which spans three domains. We then contribute PDRS, a neural instantiation of PDR. By jointly optimizing both the prerequisite learning and recommendation tasks through multi-layer perceptrons, we find PDRS consistently outperforms baseline models in all three domains, by an average margin of 7.41%. Importantly, PDRS performs especially well in cold-start scenarios with improvements of up to 17.65%.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源