论文标题

理解雅各布规范和班间分离的开放式识别

Understanding Open-Set Recognition by Jacobian Norm and Inter-Class Separation

论文作者

Park, Jaewoo, Park, Hojin, Jeong, Eunju, Teoh, Andrew Beng Jin

论文摘要

开放式识别(OSR)的发现表明,在分类数据集中训练的模型能够检测培训过程中未遇到的未知类别。具体而言,经过训练后,已知类别的学识渊博表示与未知类别的表示,促进OSR。在本文中,我们通过研究表示形式规范与/间/阶级学习动力学之间的关系来研究这种新兴现象。我们提供了理论分析,表明课堂内的学习降低了已知类样本的雅各布式规范,而课际间学习也会增加未知样本的雅各布式规范,即使没有直接暴露于任何未知样本的情况下。总体而言,已知类别和未知类别之间的雅各布规范的差异使OSR。基于这种洞察力,强调了阶层间学习的关键作用,我们设计了一个边缘的单VS-rest(M-OVR)损失函数,从而促进了强大的阶层间分离。为了进一步提高OSR性能,我们将M-OVR损失与其他策略最大化,以最大程度地提高Jacobian规范差异。我们提出了全面的实验结果,以支持我们的理论观察,并证明了我们提出的OSR方法的功效。

The findings on open-set recognition (OSR) show that models trained on classification datasets are capable of detecting unknown classes not encountered during the training process. Specifically, after training, the learned representations of known classes dissociate from the representations of the unknown class, facilitating OSR. In this paper, we investigate this emergent phenomenon by examining the relationship between the Jacobian norm of representations and the inter/intra-class learning dynamics. We provide a theoretical analysis, demonstrating that intra-class learning reduces the Jacobian norm for known class samples, while inter-class learning increases the Jacobian norm for unknown samples, even in the absence of direct exposure to any unknown sample. Overall, the discrepancy in the Jacobian norm between the known and unknown classes enables OSR. Based on this insight, which highlights the pivotal role of inter-class learning, we devise a marginal one-vs-rest (m-OvR) loss function that promotes strong inter-class separation. To further improve OSR performance, we integrate the m-OvR loss with additional strategies that maximize the Jacobian norm disparity. We present comprehensive experimental results that support our theoretical observations and demonstrate the efficacy of our proposed OSR approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源