论文标题
通过上下文和时间感知的建模,以较少的领域特定知识来改善对话推荐系统
Improving Conversational Recommender System via Contextual and Time-Aware Modeling with Less Domain-Specific Knowledge
论文作者
论文摘要
会话推荐系统(CRS)已成为一个新兴的研究主题,寻求通过交互式对话进行建议,这些对话通常由发电和建议模块组成。 CRS的先前工作倾向于将更多的外部和领域特定知识(例如项目评论)纳入以提高性能。尽管事实的收集和注释特定于外部领域的信息需要大量的人类努力并脱离了普遍性,但过多的额外知识会引入更多的困难,以平衡它们之间的困难。因此,我们建议从上下文中充分发现和提取内部知识。我们将实体级别和上下文级别的表示形式捕获为对建议的共同模拟用户偏好,在这种情况下,时间吸引的注意力旨在强调实体级表示中最近出现的项目。我们进一步使用预训练的巴特来初始化生成模块,以减轻数据稀缺性并增强上下文建模。除了在流行数据集(REDIAIL)上进行实验外,我们还包括一个多域数据集(OpenDialKg)以显示模型的有效性。两个数据集的实验都表明,我们的模型在大多数评估指标上都具有更好的外部知识指标,并且可以很好地推广到其他领域。对建议和生成任务的其他分析证明了我们在不同情况下模型的有效性。
Conversational Recommender Systems (CRS) has become an emerging research topic seeking to perform recommendations through interactive conversations, which generally consist of generation and recommendation modules. Prior work on CRS tends to incorporate more external and domain-specific knowledge like item reviews to enhance performance. Despite the fact that the collection and annotation of the external domain-specific information needs much human effort and degenerates the generalizability, too much extra knowledge introduces more difficulty to balance among them. Therefore, we propose to fully discover and extract internal knowledge from the context. We capture both entity-level and contextual-level representations to jointly model user preferences for the recommendation, where a time-aware attention is designed to emphasize the recently appeared items in entity-level representations. We further use the pre-trained BART to initialize the generation module to alleviate the data scarcity and enhance the context modeling. In addition to conducting experiments on a popular dataset (ReDial), we also include a multi-domain dataset (OpenDialKG) to show the effectiveness of our model. Experiments on both datasets show that our model achieves better performance on most evaluation metrics with less external knowledge and generalizes well to other domains. Additional analyses on the recommendation and generation tasks demonstrate the effectiveness of our model in different scenarios.